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Introduction: The Convergence of Architectures 

 

 

Preamble: A Tale of Two Networks 

 

For decades, two of the most ambitious scientific endeavors have progressed along 
parallel, yet largely separate, tracks. In neuroscience, researchers have meticulously 
mapped the intricate biological networks of the brain, seeking to understand the 
physical substrate of cognition, memory, and consciousness. In artificial intelligence, 
computer scientists have engineered increasingly vast and complex computational 
networks, striving to replicate and surpass the functional capabilities of human 
intelligence. Historically, the architectures of these artificial systems bore little 
resemblance to their biological counterparts, with AI development driven more by 
mathematical optimization and hardware constraints than by neuroscientific 
principles.1 

However, a remarkable convergence is underway. As AI models, particularly Large 
Language Models (LLMs), have scaled to unprecedented sizes, the engineering 
challenges of computational cost and efficiency have forced the field to rediscover 
architectural solutions that bear a striking resemblance to the organizational 
principles of the human brain. The brute-force approach of "dense" models, where 
every parameter is engaged for every computation, has proven to be an unsustainable 
path to greater intelligence. In its place, a more nuanced, efficient, and specialized 
paradigm has emerged: the Mixture of Experts (MoE). 

 

The Central Thesis 

 



 

This whitepaper advances the thesis that the Mixture of Experts (MoE) architecture, 
while developed primarily to solve the pragmatic problem of scaling LLMs efficiently 3, 
represents one of the most compelling computational analogues to the brain's 
principle of functional specialization to date. The core tenets of MoE—modularity, 
sparse activation, and hierarchical processing—are not merely clever engineering 
hacks; they are echoes of a biological blueprint honed by millions of years of 
evolution. The brain, confronted with the extreme metabolic constraints of biological 
tissue, arrived at a solution of specialized, conditionally-activated modules long 
before AI researchers, facing the constraints of silicon and energy, independently 
converged on a similar design.6 

This document will conduct an exhaustive exploration of this powerful analogy. It will 
deconstruct the neuroscientific foundations of brain organization, provide a technical 
deep-dive into the mechanics of MoE models, and synthesize these two domains into 
a novel, brain-inspired hierarchical MoE architecture. Finally, it will offer a rigorous 
critique of the analogy, highlighting the profound gaps that still separate the static, 
simplified world of current AI from the dynamic, plastic, and deeply complex reality of 
the human brain. 

 

Roadmap of the Whitepaper 

 

The analysis will proceed in five stages. Section 2 will establish the biological 
blueprint, detailing the principles of functional specialization, modularity, hierarchy, 
and sparse activation in the human brain. Section 3 will provide a technical exposition 
of the MoE paradigm in AI, explaining its core components, the imperative for sparsity, 
and key architectural variants. Section 4 will present the central synthesis of this 
paper: a proposed Brain-Inspired Hierarchical Mixture of Experts (BI-HME) 
architecture, complete with a visual diagram, that integrates neuroscientific and 
cognitive principles into a concrete computational model. Section 5 will critically 
examine the limitations of this analogy, focusing on the crucial differences in 
dynamism, control, and interactivity between current MoE models and biological 
neural networks. Finally, Section 6 will conclude by summarizing the findings and 
outlining a forward-looking research agenda for creating more truly brain-like artificial 
intelligence. 

 



 

The Principle of Functional Specialization in the Human Brain 

 

To understand the profound resonance between MoE architectures and the brain, one 
must first appreciate that the brain is not a monolithic, general-purpose processor. It 
is a highly structured, massively parallel system built on the principle of specialization. 
This section deconstructs the key architectural features of the brain that provide the 
biological foundation for the MoE analogy. 

 

Modularity and Domain Specificity: The Brain's "Experts" 

 

The theory of functional specialization posits that different areas of the brain are 
specialized for distinct functions, a concept with historical roots in early neuroscience 
that has been overwhelmingly validated by modern research.9 This modular design 
stands in stark contrast to holistic theories that view the brain as an undifferentiated, 
equipotential organ. The evidence for this modularity is extensive and multifaceted. 

Landmark neuroimaging and lesion studies have identified a host of these specialized 
modules. The fusiform face area (FFA) in the inferior temporal cortex, for instance, 
shows significantly more activity when subjects view faces compared to other objects, 
and damage to this area can lead to prosopagnosia, the inability to recognize faces.9 
Similarly, distinct regions within the visual cortex are specialized for processing 
specific attributes of the visual world: area V4 is critical for color perception, while 
area V5 is dedicated to processing motion.9 This specialization is not limited to 
perception; fMRI studies have revealed fine-grained functional segregation even 
within high-level association areas like the prefrontal cortex (PFC), where distinct 
cognitive functions are localized to regions just millimeters apart.10 

This modular organization is not a mere functional happenstance; it is a deep, 
biological feature that emerges during development. The process of "arealization" 
creates a mosaic of brain areas with distinct molecular properties, guided by 
gradients of gene expression that diffuse through the developing brain.11 This 
suggests that the brain's modular architecture is a fundamental principle encoded in 
our genome, providing a robust biological basis for the existence of domain-specific 

 



"experts".12 

Crucially, these neural modules operate with a remarkable degree of autonomy. 
Studies measuring the computational load on brain networks have found that when 
more cognitive functions are engaged simultaneously, the activity within local nodes 
of a given module does not necessarily increase. This demonstrates that each module 
can execute its discrete function without being significantly burdened by processing 
in other modules, showcasing a highly efficient, encapsulated design that minimizes 
interference and maximizes parallel processing capabilities.12 

 

Hierarchical Organization: From Sensation to Abstraction 

 

The brain's specialized modules are not arranged haphazardly. They are organized 
into a robust functional hierarchy that allows for the progressive transformation of 
information from simple sensory inputs into complex, abstract representations.11 This 
hierarchy is most evident along a principal sensorimotor-association axis, where 
primary sensory cortices that process raw input are situated at one end, and 
high-order association cortices that handle abstract thought and planning are at the 
other. 

The visual system provides a classic example of this hierarchical processing. Early 
visual areas like V1 process simple features such as lines, edges, and orientation. This 
information is then passed to subsequent areas that combine these primitives into 
more complex representations of shapes, textures, and eventually, whole objects in 
the inferior temporal cortex.10 A similar hierarchical structure is observed in the 
prefrontal cortex, where posterior regions are involved in simple sensorimotor control, 
while progressively more anterior regions govern control at higher and more abstract 
levels, enabling complex functions like long-term planning and rule-based behavior.13 
This hierarchical arrangement allows the brain to build a rich, multi-layered model of 
the world from the ground up. 

 

Sparse Activation: The Brain's Energy Imperative 

 

A foundational principle of brain function, critical for its feasibility, is its immense 

 



energy efficiency, which is achieved through sparse activation. The popular myth that 
humans use only 10% of their brain is profoundly misleading. While the entire brain is 
constantly active, for any given cognitive task, only a small fraction of the total 
neuronal population is firing action potentials at any one time.8 This is not a design 
flaw but a critical feature. The brain operates under an extreme metabolic budget; a 
densely firing network with billions of neurons would be biologically and energetically 
unsustainable. 

Direct evidence for this sparse coding scheme comes from electrical microstimulation 
studies. When a microelectrode is used to stimulate a small region of the brain, it does 
not activate a dense sphere of all neurons in the immediate vicinity. Instead, it 
activates a sparse and spatially distributed population of neurons, often by exciting 
their axons rather than their cell bodies.15 This finding suggests that the brain's 
computational fabric is inherently sparse. This biological necessity finds a direct 
parallel in the world of large-scale AI, where the computational cost of dense 
activation has become a primary bottleneck, forcing a move toward sparse, 
conditional computation to make progress possible.16 

 

Integration and Control: The Role of "Connector Hubs" 

 

A system composed entirely of autonomous, encapsulated modules would be 
functionally fragmented and incapable of coherent behavior. The brain solves this 
binding problem through a sophisticated network architecture that balances modular 
specialization with global integration. This integration is mediated by "connector 
nodes" or "hubs"—brain regions, typically in association cortices, that are densely 
connected to multiple modules.12 

These connector hubs act as the brain's central integrators and coordinators. fMRI 
studies show that activity in these hub regions increases proportionally with the 
number of cognitive functions engaged in a task. This suggests that while the 
specialized modules handle their discrete tasks autonomously, the connector hubs 
bear the additional computational load of integrating information and coordinating 
communication between them to maintain a coherent global state.12 Damage to these 
connector nodes results in widespread, multi-domain cognitive deficits, whereas 
damage to a local node within a module tends to cause a highly specific impairment.12 
This provides a clear biological analogue for a sophisticated, high-level "gating" or 
"routing" system that manages the flow of information and orchestrates the 

 



contributions of individual experts. 

The organizational principles of the brain do not exist in isolation. Modularity, 
hierarchy, and sparsity are not merely a collection of independent features but a 
deeply integrated, co-evolved triad that forms the foundation of the brain's 
architecture. One principle cannot be fully understood without the others, as each 
one enables and constrains the others in a delicate balance. Modularity provides the 
"what"—the specialized functional units or experts. Without it, the brain would be a 
homogenous, inefficient processor lacking domain-specific prowess. Hierarchy 
provides the "how"—the organizational structure that arranges these experts into a 
multi-resolution system capable of building abstract representations from simple 
inputs. A non-hierarchical collection of modules would be chaotic and unable to 
perform complex, multi-stage computations. Finally, sparsity provides the critical 
"constraint"—the energy budget that makes the entire system viable. A dense, 
hierarchical, modular brain with 86 billion neurons would be metabolically impossible. 
Therefore, any computational architecture that aims to be truly "brain-like" cannot 
simply adopt one of these features in isolation. It must embrace the interdependent 
nature of this triad, recognizing that it is the synthesis of modularity, hierarchy, and 
sparsity that underpins the power and efficiency of biological cognition. 

 

The Mixture of Experts Paradigm in Artificial Intelligence 

 

Coincidentally mirroring the brain's architecture, the Mixture of Experts (MoE) 
paradigm has emerged in AI not from a desire to mimic biology, but from the raw 
necessity of making ever-larger models computationally tractable. This section 
provides a technical overview of the MoE architecture as implemented in modern 
LLMs, establishing the computational counterpart to the biological principles outlined 
previously. 

 

Core Architecture: Experts and the Gating Network 

 

At its heart, an MoE model modifies the standard Transformer architecture by 
replacing its dense feed-forward network (FFN) layers with a more complex, modular 

 



structure. Each MoE layer consists of two primary components: a set of expert 
networks and a gating network.5 

●​ Expert Networks: These are a collection of parallel neural networks, typically 
identical in architecture but with independent, trainable parameters. In the 
context of Transformers, each expert is itself a standard FFN (e.g., a two-layer 
multi-layer perceptron).19 A single MoE layer might contain anywhere from a 
handful to thousands of these experts.18 

●​ Gating Network (or Router): This is a smaller, trainable neural network that acts 
as a traffic controller. For each individual input token that arrives at the MoE layer, 
the gating network analyzes it and dynamically decides which of the expert 
networks are best suited to process it.20 It computes a probability distribution 
over all available experts, effectively assigning a relevance score to each one for 
the given token.23 

The final output of the MoE layer is then calculated as a weighted sum of the outputs 
from the selected experts. The weights used in this summation are the probabilities 
generated by the gating network, ensuring that the experts deemed most relevant 
have the greatest influence on the final result.24 

 

The Sparsity Imperative: Scaling Beyond Dense Models 

 

The true innovation and primary motivation for using MoE is conditional 
computation.19 In a traditional "dense" model, every parameter in the network is 
activated to process every single input token. As models grow to hundreds of billions 
of parameters, this becomes prohibitively expensive in terms of floating-point 
operations (FLOPs). 

MoE solves this problem by introducing sparsity. The gating network is designed to 
select only a small subset of the total experts for each token. This is known as Sparse 
MoE (SMoE). Because only the selected experts' parameters are used in the 
computation, the model can possess a massive total number of 
parameters—enhancing its capacity to store knowledge—while maintaining a 
computational cost comparable to a much smaller dense model.4 

For instance, the Mixtral 8x7B model contains eight 7B-parameter experts in each 
MoE layer. However, for any given token, its router only activates two of these experts. 
The result is a model with a total of approximately 47 billion parameters, but the 

 



inference cost (the number of active parameters per token) is only around 12 billion.17 
This architectural choice allows MoE models to achieve a significantly better trade-off 
between performance and computational cost compared to dense models of 
equivalent parameter counts.5 

 

The Router's Role: Gating and Load Balancing 

 

The gating network is the functional core of the MoE layer, and its design is critical to 
the model's success. It is typically implemented as a simple linear layer followed by a 
softmax activation function, which converts the raw logits into a probability 
distribution across the experts.22 

●​ Top-K Routing: The most prevalent routing strategy is "Top-K," where the gating 
network simply selects the k experts that received the highest probability scores 
from the softmax function.5 The input token is then sent to these​
k experts. While many successful models like Mixtral use k=2, other research, 
such as in the Switch Transformer, has demonstrated that even a Top-1 strategy 
can yield competitive performance.22 

●​ The Challenge of Load Balancing: A significant challenge during the training of 
MoE models is the tendency for the gating network to develop a "favorite expert" 
bias. This can lead to a state of "expert collapse," where a small number of 
experts are routed the vast majority of tokens, while the rest are rarely used. 
These neglected experts become under-trained and effectively "atrophy," 
diminishing the model's overall capacity and defeating the purpose of having a 
large number of experts.24 This creates what has been described as an "oligarchy 
of thought," where a few dominant experts control the model's output.27 To 
combat this, an​
auxiliary load balancing loss is almost always added to the model's primary loss 
function during training. This auxiliary loss penalizes the router for assigning 
tokens unevenly, encouraging it to distribute the computational load more 
equitably across all available experts.24 

 

Architectural Variants and Innovations 

 

 



The basic MoE concept has been extended and refined in several ways to improve 
performance, scalability, and specialization. 

●​ Hierarchical MoE (HME): When the number of experts scales into the 
thousands, a single, flat gating network becomes a computational and routing 
bottleneck. HME addresses this by organizing the experts and gates into a tree 
structure. A top-level gate routes an input to a group of experts, and then a 
second-level gate within that group makes a more fine-grained selection. This 
hierarchical decision-making process reduces the branching factor at any single 
point, making routing more efficient for a massive number of experts.18 

●​ Shared Experts: Some knowledge, such as fundamental grammar or 
common-sense reasoning, is broadly applicable across many different inputs. The 
DeepSeekMoE architecture introduced the concept of having two types of 
experts: a small set of "shared experts" that are activated for every token, and a 
larger set of "routed experts" that are selected conditionally. The goal is for the 
shared experts to capture this common, foundational knowledge, freeing up the 
routed experts to specialize in more niche or domain-specific knowledge, thereby 
reducing redundancy and improving specialization.3 

●​ Dynamic MoE (DynMoE): More recent research is exploring dynamic 
architectures where the number of experts to activate is not a fixed 
hyperparameter (like k=2). In DynMoE, the gating network itself can learn to 
decide how many experts are needed for a given token, potentially activating 
more for complex inputs and fewer for simple ones. Some variants even allow the 
model to adaptively adjust the total number of available experts during the 
training process, further automating the architectural design.30 

The design of the routing mechanism is a central consideration in MoE architectures, 
involving a trade-off between computational simplicity, routing optimality, and training 
stability. The following table compares several prominent routing strategies. 

Strategy Mechanism Key Advantage Primary Challenge 

Top-K Gating Selects k experts with 
the highest softmax 
probability for a given 
token. The most 
common approach. 

Simple to implement 
and fully 
differentiable, 
allowing for standard 
backpropagation. 

Highly prone to load 
imbalance and expert 
collapse without an 
auxiliary loss 
function. 

Noisy Top-K Gating Adds trainable 
Gaussian noise to the 
gating logits before 

The added noise 
naturally encourages 
more exploration in 

Introduces an 
additional 
hyperparameter (the 

 



the Top-K selection 
process. 

routing decisions, 
improving load 
balancing. 

amount of noise) that 
needs to be tuned. 

Hash Routing Uses a deterministic, 
parameter-free hash 
function to assign 
tokens to experts. 

Extremely cheap 
computationally as it 
requires no trainable 
parameters for the 
router itself. 

The routing is static 
and non-adaptive; it 
may not assign 
tokens to the truly 
optimal expert. 

Shared + Routed 
Experts 

A fixed set of 
"shared" experts is 
activated for every 
token, in addition to a 
conditionally selected 
set of "routed" 
experts. 

Efficiently captures 
both common, 
foundational 
knowledge (in shared 
experts) and 
specialized 
knowledge (in routed 
experts). 

Increases the 
per-token 
computational cost, 
as the shared experts 
are always active. 

Dynamic Top-K 
(DynMoE) 

The gating network 
learns to determine 
the number of 
experts (k) to activate 
for each token 
dynamically. 

Highly adaptive, 
allocating more 
computation to more 
complex tokens. 
Removes k as a fixed 
hyperparameter. 

Can be more complex 
and potentially less 
stable to train 
compared to fixed 
Top-K strategies. 

 

A Brain-Inspired Hierarchical MoE Architecture 

 

By synthesizing the architectural principles of the human brain with the computational 
framework of Mixture of Experts, it is possible to outline a blueprint for a more 
biologically plausible and potentially more capable AI system. This section proposes 
such an architecture, the Brain-Inspired Hierarchical Mixture of Experts (BI-HME), 
which moves beyond using MoE as a mere efficiency tool and instead leverages it as a 
foundational model for compositional cognition. 

 

The Brain as a Mixture of Experts: A Cognitive Science Framework 

 



 

The analogy between MoE and the brain is not merely a structural coincidence; it is 
supported by a compelling theoretical framework from cognitive science. Researchers 
have proposed that the brain's decision-making and behavioral control systems can 
be effectively modeled as a Mixture of Experts.6 In this view, distinct cognitive 
strategies or entire neural systems act as competing "experts." For example, the brain 
might arbitrate between a goal-directed, "model-based" reinforcement learning 
system that plans using a cognitive map of the world, and a habitual, "model-free" 
system that relies on cached stimulus-response values.6 

Crucially, this framework posits a "manager" or gating mechanism, believed to be 
implemented in the prefrontal cortex (PFC). This manager's role is not just to select an 
expert, but to do so based on a sophisticated evaluation of each expert's reliability in 
the current context.7 The brain continuously tracks the prediction errors of its various 
expert systems; those with a history of making accurate predictions (low error) are 
deemed more reliable and are given greater control over behavior. This provides a 
powerful, biologically grounded principle for gating: route information not just based 
on input features, but on the trusted competence of the available specialists. 

 

Architectural Blueprint: A Hierarchical Model for Compositional Cognition 

 

Building on the brain's triad of modularity, hierarchy, and sparsity, and incorporating 
the cognitive principle of reliability-based gating, the proposed Brain-Inspired 
Hierarchical Mixture of Experts (BI-HME) architecture is structured as follows: 

●​ Multi-Level Hierarchy: The architecture is organized as a deep, multi-level 
hierarchy that mirrors the brain's progression from sensation to abstraction.33 

○​ Level 1 (Sensory Cortex Analogue): This foundational level consists of 
clusters of low-level experts, each specialized for a specific sensory modality. 
For example, one cluster would contain visual experts for processing 
primitives like edges, colors, and motion, while another would contain auditory 
experts for phoneme recognition. The gating network at this level performs 
coarse routing based on the type of input data. 

○​ Level 2 (Association Cortex Analogue): This intermediate level contains 
experts that perform compositional operations, taking the processed 
representations from Level 1 as input. Experts here are specialized for more 

 



integrated tasks, such as combining visual primitives into object 
representations (analogous to the ventral visual stream) or assembling 
phonemes into syntactic structures (analogous to language areas). This 
hierarchical composition of primitives is directly inspired by models of 
compositional learning in both humans and AI.36 

○​ Level 3 (Prefrontal Cortex Analogue): At the apex of the hierarchy are 
high-level experts dedicated to abstract reasoning, planning, logical 
inference, and goal-oriented decision-making. These experts operate on the 
highly symbolic and structured representations produced by Level 2. The 
gating network at this level functions as the primary cognitive controller, 
analogous to the executive functions of the PFC.13 

●​ Shared and Specialized Experts: To balance generalization with specialization, 
the BI-HME incorporates both shared and specialized experts at the intermediate 
and high levels.3 Shared experts, which are always active or have a high 
probability of activation, would encode foundational, domain-general knowledge 
such as logic, causality, and core linguistic grammar. Specialized experts would be 
routed conditionally for domain-specific tasks like medical diagnosis, legal 
analysis, or software engineering. 

●​ Reliability-Based Gating: A key innovation of the BI-HME is that its gating 
networks are more than simple routers. They are designed to be stateful 
mechanisms that maintain a running estimate of the reliability of each expert or 
expert cluster they control, directly implementing the cognitive science model.7 
This would involve tracking the prediction errors of experts over time. When faced 
with a new input, the gating decision would be a function of both the input 
features (bottom-up signal) and the historical reliability of the experts (top-down, 
context-aware signal), allowing for more intelligent and robust routing. 

 

Mermaid Diagram of the Proposed BI-HME Architecture 

 

The following diagram illustrates the proposed architecture, showing the flow of 
information through the hierarchical levels and the interplay between gating networks 
and expert clusters. 
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A Computational Sandbox for Neuroscience 

 

The BI-HME is proposed not merely as a theoretical construct for AI development, but 
also as a powerful, falsifiable model for computational neuroscience. Its modular and 
hierarchical nature makes it an ideal "in silico" sandbox for investigating the 
mechanisms of neurological disorders. 

Recent pioneering work has already demonstrated the feasibility of this approach. 
Researchers have successfully simulated different types of aphasia (a language 
disorder) by selectively "lesioning" (disabling) individual experts within an MoE 
language model. By ablating experts that had emergently specialized in syntactic 
processing, they could replicate the symptoms of Broca's aphasia, while lesioning 
semantics-focused experts mimicked Wernicke's aphasia.37 This establishes MoE 
models as a clinically relevant framework for computationally exploring the effects of 
localized brain damage. 

The proposed BI-HME, with its more complex and brain-like structure, could extend 
this paradigm significantly. It would allow researchers to simulate a wider range of 
neurological and psychiatric conditions with greater fidelity. For example: 

●​ Sensory Agnosias: Lesioning experts in the Level 1 "Sensory Cortex" could 
model conditions like visual agnosia (the inability to recognize objects) or pure 
word deafness. 

●​ Executive Dysfunction: Damaging the Level 3 "PFC Analogue" gating network 
could simulate the deficits in planning, decision-making, and cognitive control 
seen in patients with frontal lobe damage. 

●​ Disconnection Syndromes: Severing the connections between hierarchical 
levels could model syndromes thought to arise from a failure of integration 
between different brain systems. 

By comparing the performance of these lesioned models to human patient data, 
researchers could test hypotheses about the functional role of different brain regions 
and the network-level basis of cognitive deficits. 

 

 



Critical Analysis: Bridging the Gap Between Silicon and Synapse 

 

While the MoE architecture presents a compelling structural and functional analogy to 
the brain, it is crucial to maintain a critical perspective. In their current form, MoE 
models are a caricature, not a replica, of biological neural networks. The analogy is 
powerful as a source of inspiration, but it breaks down under scrutiny in several key 
areas, revealing the profound chasm that still exists between artificial and biological 
intelligence. 

 

The Illusion of Dynamism: Static Experts vs. Neuroplasticity 

 

The most significant limitation of the current MoE paradigm lies in the nature of its 
experts. While the routing of information between experts is dynamic, the experts 
themselves are fundamentally static.28 During the training phase of an LLM, the 
parameters of all experts are learned and optimized. However, once this training 
phase is complete, their weights are frozen. They become fixed, immutable knowledge 
repositories.27 This can lead to a form of architectural brittleness, where experts that 
are infrequently selected by the router receive no further updates, effectively 
atrophying from neglect and becoming outdated repositories of knowledge.27 

This static nature is in diametric opposition to the defining characteristic of the 
biological brain: neuroplasticity. The brain is not a fixed entity; it is a dynamic system 
that constantly rewires itself in response to experience, learning, and injury 
throughout an organism's lifespan.39 This plasticity occurs at multiple levels, from the 
strengthening and weakening of individual synaptic connections (long-term 
potentiation and depression) to the large-scale reorganization of cortical maps.45 The 
brain is in a perpetual state of learning and adaptation, a process that is continuous 
and online.2 

Here, the analogy collapses. An MoE model is akin to a brain that is fully formed at the 
end of a developmental period ("training") and is thereafter incapable of learning new 
skills or updating its knowledge, able only to select from its pre-programmed 
repertoire. True brain-like intelligence demands more than dynamic routing; it requires 
dynamic experts—sub-networks that are themselves plastic and capable of continual, 

 



lifelong learning without catastrophic forgetting.1 

 

The "Manager" Problem: Oversimplified Gating vs. Complex Cognitive Control 

 

A second major oversimplification lies in the gating mechanism. In virtually all current 
MoE implementations, the router is a remarkably simple computational device. It is 
typically a single linear layer followed by a softmax function, performing a rapid, 
stateless, and feed-forward calculation based on the features of the immediate input 
token.22 Its only nod to a more global objective is the crude auxiliary loss function used 
to enforce load balancing.8 This simplistic design can lead to a "narrow vision" 
problem, where an expert's knowledge is confined only to the specific subset of data 
it is exposed to by the router, limiting its ability to generalize.49 

The brain's "gating" system, primarily orchestrated by the prefrontal cortex, is orders 
of magnitude more complex. It is not a reactive switch but a proactive, deliberative 
control system. It exerts top-down control that is deeply context-aware, integrating 
not just the current sensory input but also internal goals, attentional state, working 
memory, and long-term objectives. As discussed in the cognitive science framework, 
its decisions are informed by complex, stateful computations of reliability and 
uncertainty, honed over time.7 Furthermore, its function is modulated by global 
neurochemical signals (e.g., dopamine, serotonin, norepinephrine) that regulate states 
like arousal, motivation, and learning. 

The current MoE gating mechanism is a gross oversimplification of this intricate 
system of cognitive control. It lacks memory, goal-directedness, and the ability to 
perform deliberative, multi-step reasoning about which expert to consult. It is a reflex, 
not a manager. 

 

Isolated Specialists vs. Integrated, Collaborative Networks 

 

The standard MoE architecture models experts as isolated specialists that work in 
parallel. When a token is routed to, for example, two experts, each one processes the 
token independently. Their outputs are then simply aggregated, typically through a 
weighted sum, without any direct interaction or communication between the experts 

 



themselves during the computation.27 There is no opportunity for debate, mutual 
correction, or iterative refinement based on each other's intermediate calculations. 

This, again, contrasts sharply with the brain's architecture. While brain modules 
exhibit functional autonomy, they are embedded within a massively interconnected 
network. Complex cognition rarely relies on a single module in isolation. Instead, it 
emerges from the dynamic, recurrent, and collaborative interplay between multiple 
brain regions. The brain is not merely an ensemble of independent voters; it is a 
deeply interactive system where constant back-and-forth communication is the 
norm.9 

The standard MoE model fails to capture this collaborative essence of neural 
computation. However, this is a recognized limitation, and nascent research in AI is 
beginning to explore solutions. The "Chain-of-Experts" (CoE) architecture, for 
instance, proposes a departure from parallel processing. In a CoE layer, an input token 
is processed sequentially through a chain of selected experts, with the output of one 
expert becoming the input for the next. This allows for an iterative refinement process, 
where experts can build upon and modify the work of their predecessors within a 
single layer.50 This and similar approaches represent a crucial first step toward 
modeling the more integrated and collaborative nature of brain function. 

The following table provides a direct, side-by-side comparison of the key architectural 
and functional properties of current MoE models and the human brain, summarizing 
the critical gaps discussed in this section. 

Feature Mixture of Experts (AI 
Implementation) 

Human Brain (Biological 
Reality) 

Functional Unit ("Expert") 
Nature 

Static & Fixed: Feed-forward 
network with parameters 
frozen after training. Prone to 
knowledge decay and 
brittleness if underutilized. 

Plastic & Adaptive: Neural 
circuits (modules) exhibit 
lifelong neuroplasticity, 
constantly reorganizing based 
on experience, learning, and 
injury. 

Control/Gating Mechanism Simple & Reactive: Typically 
a single linear layer with a 
softmax function. A stateless, 
feed-forward decision based 
on local input features. 

Complex & Proactive: 
Cognitive control mediated by 
the prefrontal cortex. 
Integrates goals, context, 
memory, and reliability signals 
in a stateful, top-down 

 



manner. 

Learning & Adaptation Offline & Episodic: Learning 
occurs primarily during a 
distinct, offline training phase. 
Generally incapable of online, 
continual learning without 
catastrophic forgetting. 

Online & Continuous: 
Lifelong, continuous learning 
is the default operational 
state. Seamlessly integrates 
new knowledge while 
preserving existing memories. 

Inter-Expert Connectivity Isolated & Parallel: Experts 
operate independently 
without direct communication 
within a single forward pass. 
Outputs are simply 
aggregated. 

Integrated & Collaborative: 
Modules are part of a richly 
interconnected network. 
Function relies on dynamic, 
recurrent, and collaborative 
interactions between regions. 

Energy Efficiency Principle Computational Sparsity: 
Achieved via conditional 
computation as an 
engineering solution to 
reduce FLOPs and make 
scaling feasible. 

Metabolic Sparsity: 
Achieved via sparse neural 
activation as a fundamental 
biological constraint evolved 
over millions of years to 
minimize energy consumption. 

 

Future Directions and Conclusion 

 

 

Summary of Findings 

 

The analysis presented in this whitepaper reveals a compelling, albeit incomplete, 
convergence between the architectures of artificial and biological intelligence. The 
Mixture of Experts (MoE) paradigm, born from the computational necessity of scaling 
Large Language Models, has independently arrived at core architectural 
principles—modularity, hierarchy, and sparse activation—that have long been 
recognized as hallmarks of the human brain's organization. This parallel is not merely 
superficial; it extends to a functional level, where the MoE's "divide and conquer" 
strategy of routing tasks to specialized sub-networks offers a powerful computational 

 



model for the brain's principle of functional specialization. The proposed 
Brain-Inspired Hierarchical MoE (BI-HME) architecture demonstrates how these 
parallels can be synthesized into a concrete framework for building more structured 
and potentially more capable AI systems. 

However, this analysis has also underscored the profound limitations of the current 
analogy. Today's MoE models are a pale reflection of their biological counterparts. 
Their experts are static and incapable of lifelong learning, their gating mechanisms 
are simplistic reflexes devoid of genuine cognitive control, and their experts operate in 
isolation rather than as a collaborative, integrated network. The current MoE is a 
snapshot of a brain, not a living, adapting mind. 

 

A Roadmap for Brain-Inspired AI 

 

Rather than dismissing the analogy, these limitations should be viewed as a clear and 
exciting research agenda. The path toward more genuinely brain-like AI requires 
moving beyond the current paradigm and tackling these challenges head-on. Three 
key research directions emerge: 

1.​ Developing Plastic Experts: The next generation of MoE models must break free 
from the static, train-then-deploy lifecycle. Research should focus on imbuing 
expert sub-networks with the capacity for continual learning. This involves 
integrating principles from synaptic plasticity research, such as Hebbian learning 
rules and mechanisms for long-term potentiation/depression, directly into the 
expert modules. The goal is to create experts that can adapt their parameters 
and acquire new knowledge online, in response to new data, without 
catastrophically forgetting what they have already learned.2 

2.​ Designing Sophisticated Gaters: The simplistic router must be replaced with a 
true cognitive controller. Future work should focus on designing more complex, 
stateful gating mechanisms inspired by the functions of the prefrontal cortex. 
These gaters should possess their own memory, be able to maintain and pursue 
goals, and make routing decisions based on sophisticated, learned models of 
their experts' reliability and the broader task context, rather than just local token 
features.7 This would transform the router from a simple switch into the executive 
core of the system. 

3.​ Fostering Expert Collaboration: The paradigm of isolated, parallel expert 
processing must give way to models that support integrated, collaborative 

 



computation. Architectures like the Chain-of-Experts (CoE) model, which 
introduces sequential, iterative processing, are a vital first step.50 Future research 
should explore richer forms of inter-expert communication, including recurrent 
connections, attention mechanisms between experts, and protocols for "debate" 
or consensus-building, allowing the system to solve complex problems through 
the synergistic interaction of its specialized components. 

 

Concluding Thought: From Analogy to Inspiration 

 

The Mixture of Experts architecture stands at a fascinating intersection of 
computational engineering and natural design. While it is not yet a faithful model of 
the brain, its emergence signals a pivotal shift in AI. The constraints of scale are 
forcing the field to abandon monolithic, brute-force designs and embrace principles 
of modularity, specialization, and efficiency that evolution discovered eons ago. 

The ultimate value of the MoE-brain analogy, therefore, is not its current descriptive 
accuracy but its prescriptive power as a framework for future research. By treating 
the brain not as a mysterious black box to be vaguely imitated, but as a mature, 
field-tested architecture to be explicitly studied and reverse-engineered, the AI 
community can chart a more principled course forward. The challenge is no longer 
just to scale our models, but to structure them. By using the brain's blueprint as our 
guide—by building systems with plastic experts, intelligent controllers, and 
collaborative networks—we may finally move beyond creating ever-larger repositories 
of static knowledge and begin to engineer systems that possess the adaptability, 
robustness, and genuine intelligence that remains the hallmark of biological cognition. 
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